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ABSTRACT 

I consider an exact model of atomic spontaneous dipole emission and 

classical dipole radiation  in  a  finite photonic band-gap structure. The full 3D or  

2D problem is reduced to a  finite 1D model, and  then  this  is solved for analytically 

using  algebraic matrix  transfer techniques.  The results give insight to the 

electromagnetic  emission  process  in periodic dielectrics,  quantitative  predictions 

for emission  in 1D dielectric  stacks,  and  qualitative  formulas for the 2D and 3D 

problem. 
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1. INTRODUCTION 

From the beginning, one of the principal  potential  applications of photonic 

band-gap (PBG) materials was to the control of atomic spontaneous dipole 

emission [l, 21. In  particular, it  was  predicted that emission could be suppressed 

for dipoles located inside the PBG material when their  resonant  emission 

frequency o, was  in  the photonic band  gap. In  this frequency range  the electro- 

magnetic  density of modes p(w) is very  small.  Resonant enhancement of emission 

was expected at  the photonic band edges where  the  density of modes (DOM) was 

anomalously  large.  These  phenomena are  a  result of the so-called Purcell  Effect. 

Purcell concluded that  nontrivial boundary conditions on the  electromagnetic 

field surrounding  a dipole emitter  can  alter  the emission rate. They do so by 

altering  the DOM and  the electromagnetic modal field e(uo ,rJ at  the position ro of 

the dipole [31. (This  original  paper of Purcell was actually  a short  abstract for a 

talk to be given at  an  annual  meeting of the American  Physical Society.  He 

apparently never wrote up  anything more about it nor even gave the  talk. 

Nevertheless, he gives in  this  short  abstract  the  first  quantitative  formula for the 

alteration of spontaneous emission in cavities.) 

In 1992, Bowden and  I gave a  general  formalism for computing atomic or 

classical dipole radiation  rates  in  an inhomogeneous dielectric medium, of which 

a PBG material  is  a specific example [4]. Although our theory  was completely 

general,  it  takes  a  supercomputer to figure out the DOM and  electromagnetic 

modal structure of a full 2D or 3D PBG structure. Hence, after  presenting  the 

general  formalism, we gave an exactly solvable  model in  terms of an infinite l D  

Kronig-Penney model of the full 2D or 3D structure. This  approximation is due to 

John  and Wang. It  amounts to replacing  the Brilloun zone  (BZ) of the 2D 
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structure by a perfect circle, or of the 3D one by a perfect sphere-the same circle 

or sphere for  both polarizations [5]. Physically, this model is in the  spirit  which 

Yablonovitch searched for a full 3D  PBG  by experimentally  investigating 

structures whose BZ was as close to spherical as possible [5]. Hence, this model 

gives qualitative  predictions of what to expect in 2D and 3D, and  quantitative 

predictions  in lD periodic dielectric PBG slabs.  Unfortunately,  due to the low- 

dimensionality of the problem, as well as the assumption of an infinite 1D lattice, 

the DOM of this model is formally  infinite at  the edges of the photonic band gap. 

Since the  spontaneous  emission  rate  is  proportional to this DOM, the  model 

breaks down at  the photonic band edge, producing unphysical  divergent results. 

In 1995 on a  supercomputer,  Suzuki and Yu used the  general 3D formalism 

developed  by  Bowden and me. They were able to compute the emissive power of a 

point dipole embedded in an infinite 3D  fcc dielectric PBG lattice [7]. Using the 

same  approach, working with Schultz  and  collaborators,  they also were able to 

accurately model the emission of a radio-wave dipole oscillator embedded in  a 2D 

array of dielectric rods. They obtained quantitative  agreement between theory and 

experiment [8]. This work conclusively demonstrated  the  utility of our approach 

in  realistic  experiments. However, the need for numerically  intensive  computa- 

tions  obstructs  intuitive  understanding of the basic physics involved. For this 

reason, I have gone  back to the old one-dimensional  Kronig-Penny model of my 

1992 paper  with Bowden and removed the  restriction of the infinite 1D lattice 

assumption.  Perhaps  surprisingly,  the  restriction to finite periodic arrays  makes 

the  analytic calculation  much harder, due to the fact that  the system  is not 

absolutely periodic. This  lack of symmetry  greatly complicates the  algebra,  but  a 

systematic  attack  using  techniques of matrix-transfer theory has yielded a 

solution that I will present  here. 
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The  first  phase of the calculation has already been carried  out in a  previous 

work by Bendickson, Scalora, and me. In this paper we were able to find an exact 

expression for the DOM of a  large class of an  arbitrary, 1D PBG structures,  using 

a matrix  transfer approach [9, lo]. This  technique  was also applied by us  

numerically  in  order to model the spontaneous emission rate of active emitters in 

an experiment conducted by our group. We considered emitters  near  the photonic 

band edge of a 1D semiconductor  superlattice [ l l ] .  We were also able to use these 

ideas  in order to understand theoretically and  experimentally  the  anomalously 

large group delay for ultra-short optical pulses  propagating at photonic band-edge 

frequencies in 1D PBG structures [12, 131. The solution p(w) of the DOM follows 

from the eigenvalue solutions of the 1D Helmholtz equation  in an  inhomogeneous 

medium. Discovering the  electromagnetic modes e(wo ,r& amounts to the logical 

next  step of finding the eigenvectors, which is  usually  a more difficult problem. It 

is  this  final  step  that I wish to present  here  and  then enfold into  the  previous 

results to give a  general  solution to the  finite, lD, spontaneous emission problem 

in a periodic dielectric. 

In Sec. 2, I will review the  general  theory of dipole emission in  inho- 

mogeneous dielectrics and  the consequences of a  restriction to 1D. In Sec. 3, I  will 

develop the analytic matrix  transfer techniques for a  finite 1D  PBG structure  and 

from this  result  extract  analytic expressions for the DOM and electric modal 

fields. From these formulas, according the Purcell  prescription,  I  can  finally give 

a result for atomic emission in  a  finite 1D model that  is free from band-edge 

singularities.  In Sec. 4, I will apply this  general  theory to the special case of 

emitters  in a  traditional  quarter-wave  stack  as  a  simple  example.  Then in Sec. 5, 

I will summarize  and conclude. 
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In addition to the  applications to atomic emission,  this work contains for 

the  first time the  general, exact solution for the modal fields e(o, ,rJ in a lD,  finite 

periodic structure.  This solution should have many applications to the  study 

electromagnetic wave propagation in 1D periodic media. 

2. SPONTANEOUS EMISSION IN INHOMOGENEOUS MEDIA 

2.1 Fermi’s  Golden  Rule  and the Purcell Effect 

It has been known for some time now that  the effect of a cavity on emission 

rates of atoms  is  essentially  classical [14-161. This can be seen by considering 

Fermi’s golden rule. Suppose we have  a  single two-level atom coupled to the 

electromagnetic field. Further suppose that  the atom is  in  an  initial excited state 

I i )  and  the field contains no photons. The state of the  system  can be written 

I i ,Ok) where 0, indicates the lack of photons of wave number k . Let the  final  state 

of the system  consist of the  atom  in some final  state I f )  after  the  release of a 

photon. The final state of the system  is then I f ;  l k ) .  Fermi’s  golden rule yields for 

the  spontaneous  transition  rate wF gives the following, 

where f i  is Dirac’s constant  (Planck’s  constant divided by 27d) and p is the dipole 

moment operator for the atomic transition. It  turns out that  the DOM is  the same, 

both from a QED and a  classical  standpoint [4]. The expectation of the  quantum 

mechanical dipole moment I c f l  q x I i )  I can be identified with the time  averaged 

dipole moment of a  classical oscillator with q the  charge  and x the  charge 

displacement. At the single photon event level the electric field operator e(oo ,rJ 

has two equal  contributions from the atomic radiation-reaction  (self) field and 
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from  the QED electromagnetic vacuum fluctuations. Both contributions  experi- 

ence the  same  boundary conditions, so they exhibit the  same cavity QED correc- 

tion factor [17]. For a single atomic spontaneous emission event, they both 

contribute  equally to the  transition  rate, Eq. (1). However, in  the  classical 

correspondence-principle  limit of large  quantum  numbers  and  many  photons, 

only the  radiation-reaction  term  contributes.  The effect of the single vacuum 

photon is negligible in  this classical regime. Hence, the  classical  calculation  will 

be smaller  than a  full quantum calculation by only a factor of two, which is 

apparent at  the single quantum level. (Purcell's original formula is too small by a 

factor of two-indicating that he had a classical derivation in mind in 1945, before 

QED was invented.) For a single atom, one can think of the  spontaneous  emission 

as being stimulated by equal parts  radiation-reaction  and  vacuum fields. With 

these considerations the classical expression becomes, 

where hw, + P(uo7 ro) is  the classical Poynting vector power output  in  the  limit of 

large  quantum  numbers  and  large  numbers of photons. Here, p is  the  classical 

dipole moment and e(uo,ro) the electric modal function evaluated at  the dipole 

frequency and position. The factor K is a dielectric enhancement factor that 

depends on the  value of the index of refraction n(oo,ro), also at  the frequency and 

position of the dipole. For a  tenuous medium such as a  gas  the dielectric constant 

has  the effect of concentrating the electric field at the dipole position by a factor of 

K = n3. There  is one factor of n for each modal degree of freedom. However, if the 

dipole is embedded in a very dense material  such  as a dielectric solid then local 

field  effects  come into play and  there  is a  different factor, namely K = (2+n2)/3 in 

that case [ M I .  
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The electric field  modal function is normalized such that [4, 191, 

where V is  the cavity mode  volume. Physically, this gives the modal field in units 

that normalizes the electromagnetic energy to unity. The time-dependent decay of 

this energy is proportional to the Q of the cavity, and allows us to arrive  at 

Purcell’s formula  in terms of cavity Q and  the volume V of the mode [3]. 

When comparing  the effect of the cavity on the  enhancement  and  suppres- 

sion of dipole emission,  it is necessary to choose a proper control system.  For 

example,  it would  not be fair to embed a dipole in a  high-index region of a 

dielectric lattice,  and  then compare the emission with that of free  space.  The 

dielectric local-field enhancement factor alone would provide a  somewhat  trivial 

enhancement  apart from the cavity-induced interference effects which we are 

interested  in. For this reason, one should strive to use as a control the  emission 

rate of a dipole embedded in an infinite homogenous medium of index n(ro). For 

that  is  the value of the inhomogeneous index at  the dipole location in  the photonic 

band structure.  This  is practicable from an experimental point of view when one 

can scale the emission spectrum  data from the PBG sample by that of a reference 

emitting bulk  medium to obtain  a normalized power emission [ll], 

where ji =p//p/is  the normalized dipole moment unit vector. Hence, Eq. (4) 

represents  the  pure geometrical effect of cavity-induced interference on the dipole 

emission. All physical factors,  such as  the local-field factor and  absolute dipole 

moment, have been scaled out. Since fi is a fixed  vector, we need only  now 

compute p(wo)  and e(ao,ro) to give the final emission power. 
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2.2 One-Dimensional  Scattering and the Wave Equation 

The  formulas given  above  for calculating the bulk-scaled emission rate 

p(m,,,ro), require  the  functional form of the  density of modes p(w) and  the  modal 

functions e(uo,r0). For a 1D problem, this reduces to solving the 1D Helmholtz 

wave equation [41, 

w2 
C2 

Y ’ W  + - n2(x )y ( z )  = 0 , 

where I have neglected the  dispersion of the index function n(x), as is  usually 

done. The  solution of this eigenvalue problem yields the  dispersion  relation 

o = d k )  and  the modal eigenvectors y =yb  as a function of the eigenvalue (wave 

number) k.  Differentiating the dispersion relation gives the  density of modes [4], 

dk 
dw 

p(w) = - 7 

which is  the reciprocal of the group velocity [9, 12,  131. For the dipole emission 

problem, Eq. (6) can be interpreted as counting  the  number of modes Ak available 

for photons to radiate into, per unit frequency do. The more of these  there  are,  the 

faster  the dipole radiates. The eigenvectors yk  can then be normalized as  per 

Eq. (3), giving all  the pieces for the solution, Eq. (4). However, even in 1D this  is a 

nontrivial problem to carry out analytically. Eq. (5) is only exactly solvable for a 

small  class of functions n(x). Of course the equation may be  solved numerically by 

finite difference techniques, but  here I take a different tack and use  methods from 

1D scattering  theory [9, 131. 

Consider Fig. (11, where I treat  the inhomogeneous 1D dielectric  in terms 

of a scattering problem. Assuming  an incoming field of unit  amplitude from the 

left and zero field from the  right,  the  scattered fields are  the complex transmitted 
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and reflected field amplitudes t and r. Under the  assumptions  that  the index n(x)  

is  linear, lossless, and dispersionless, this scattering process may be written  in 

transmission  matrix form as [9,131, 

where A and p are  the left and  right boundary-condition vectors, respectively, and 

M is the  transfer  matrix. The form of M in  Eq. (7) is completely determined  from 

linearity  and  time-reversal  symmetry [9, 131. If the  further condition of lossless- 
ness  is imposed, then  in addition we have det M = 1. The scattering  amplitudes 

can be written  in  terms of amplitude  and  phase  as, t = e i 9 n  and T- = e i y l f i ,  

where, if energy is conserved, then  the  relation T + R = I holds. In  general  the 

phases cp and w are not equal. However, if the index profile is  symmetric, n[-(x- 

d/Z)]=  -n[x-d/ZJ, then we have cp - w = h / 2  mod ,271; which is a  well-known 

property of symmetric beam splitters.  Here,  this  is  just  a consequence of parity 

conservation (reciprocity) in  a generally  symmetric structure [13]. Writing cp = kd, 

where d is  the physical length of the  structure,  I can now relate k=k(w) to the 

1 - 1  

solution of the  scattering problem. In  other words, given n($, if  we can solve for t 

and r as functions of frequency w, we can  then  extract k = rp(w)/d. Finally, 

differentiating  this  expression gives us  the  density of modes dkldw, Eq. (6) .  If I 

write  the  transmitted  amplitude in Argand notation, t = u + iv, then  the DOM can 

be written as [9, 131, 

where  differentiation  is  with respect to frequency w. Thus  the DOM is  extracted 

from the solution to the  scattering problem. To get out the  unnormalized  modal 

eigenvector, E(w, ,r&, let us recall that  the  general solution to the  Helmholtz 
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Eq. ( 5 )  can be written  as y(x) = A f(x) + B g(x). Here, f and g are the two independ- 

ent solutions  required for a second order differential  equation. If n(x) has  an 

exactly solvable form, then f and g are known. For example, if n(x) is  constant, 

then f and g are  sines  and cosines, or complex exponentials. If n2(x) = ax+b is a 

linear function, then f and g have solutions in  terms of the Airy functions Ai and 

Bi. Taking fand g to be known, I may apply the boundary conditions (BC) of Eq. (7) 

and solve for complex A and B in terms of complex t and r. This is done by setting 

the  sum of the BCs at  the left interface equal to the  sum of the  components of E(x) 

evaluated  at  the left boundary. A similar equation holds for the  right  boundary. 

Solving the two equations  simultaneously for the two unknowns A and B,  yields 

which allows us to write as E(w,x) = A(o) f(w,x) + B(o) g(w,x), recalling that t=t(w) 

and r=r(w). If f and g are can not be found exactly, then they can be found 

numerically by either finite  difference methods or by subdividing the index profile 

n(x) up  into  partitions. Over each partition one takes n(xi) to be constant  and  then 

applies  a numerical  matrix-transfer approach to solve  for E(@, x i )  in  each 

subdivision [ 111. 

Two further conditions are needed to  make sure  the solution is  unique, and 

they are energy  conservation, T + R = 1, and  energy  normalization, which can be 
done by first computing  the modal energy as per Eq.(3), U = .'(x) lE(x)rdx , 

d 

and  then defining the eigenvector e(w,x) = E(w,x)/ n. This  prescription gives us  

the 1D scaled emission rate, Eq. (4), as p(o , x )  = p(w)  le(w,x)l , where  I  take the 2 

dipole moment perpendicular to the x direction. Physically, this corresponds to 
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the  rate at  which the photons are emitted into the two  modes in the f=c direction of 

a 1D structure. 

2. EMISSION IN FINITE 1D PHOTONIC BAND-GAP STRUCTURES 

In  this section, I will define a 1D PBG structure  and derive properties of the 

N-period PBG stack  in  terms of properties of the unit-cell problem. The unit-cell 

wave equation (5) is  assumed to be solved as was described in  the previous section. 

Once this  is done, I  can then express the emissive properties of a dipole embedded 

in  the  stack  in  terms of quantities associated with the  unit cell. 

2.1 properties of the 1D Stack 

From Fig. 2, we see that  a finite, lD, N-period,  quasi-periodic PBG 

structure can be defined by just  repeating  the  unit cell N times.  The new complex 

transmission  and reflection coefficients are t, = ei9, = uN + iu,, and 

r-N = eiVN a. From  linearity, we have that  the  transfer  matrix for the PBG stack 

M, can be written  in  terms of M for the  unit cell as M, = M N .  I now wish to 

derive  a simplified form of M,that allows us to find an exact functional  form for 

the needed DOM p N ( w )  which is  a global property of the N-period stack. We also 

need e , ( o , x ) ,  a local function in  the nth unit cell where the  emitter  is located. To 

find this,  first  note  that  the  unit cell matrix M has  an eigenvalue equation 

&2-2m{1/t}+1=0,  (10) 

where E is  the  eigenvalue, 9 the  real-part function, and t is  the complex trans- 

mission amplitude for the  unit cell. This  equation has two solutions E+ - that  are 
related by &+E- = det M = 1, from energy conservation. Now I can  relate 971 ltl to 1 - 1  
the Bloch phase of the infinite periodic structure,  corresponding to 
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(hypothetically)  continuing  the  lattice in Fig. 2 to infinity in  both directions.  From 

the definition of eigenvector, the Bloch vectors b obey the  particular  equation 

that is, the vectors vary only in  phase  and not amplitude from cell to cell in  the 

infinite structure,  where E: = are  the Bloch eigenvalues. Since Eq. (10) holds 

for all  eigenvalues, it holds for E:, which yields the very important  relation  that 

cosp = %/l/t) ,  connecting  the transmission  amplitude to the Bloch phase, a s  

promised. Important to note is  that  the Bloch phase depends only  on properties of 

the  unit cell. I  am now ready to derive a simplified form of M N .  

Recall from the Cayley-Hamilton theorem  that every matrix obeys its own 

eigenvalue equation [201 , hence 

M"2Mcosp+i=o, (12) 

where 1 is  the two-by-two identity matrix. Then by mathematical induction [9], it 

is easy to establish  the Scattering  Matrix  Reduction  Formula (SMRF), namely, 

which allows us to express the  transfer  matrix of the  entire N-period PBG stack  in 

simple closed form in  terms of the  matrix of the  unit cell M ,  Eq. (7), and  simple 

trigonometric  functions of the Bloch phase p. Every quantity on the  right-hand- 

side of Eq. (13) depends only  on properties of the  unit cell, except for the explicit 

integer N in  the  argument of the  sine  functions.  I  first define an  auxiliary 

function [21], which is related to the Chebyshev polynomial of the first kind by 

ZJp) = sin NB / sin B. Then from Eq. (13) and  the definition of M in Eq. (7), I can 

solve  for t, and r, implicitly to get, 



which allows us to compute TN’ R ,  pN, and yN, the  details of which can be found 

in Refs. 9 and 13. In  particular,  in  these  papers we discussed the evolution of the 

gap,  transmission  and reflection in  the  gap  and at  the band-edge resonances, and 

the DOM and group delay in  the gap  and at  the band edge-all in terms of analytic 

formulas. 

2.2 Emission in the 1D Stack 

Eqs. (14) for tN and rN can be used directly in Eq. (8)  for the  density of modes, 

allowing us to write it  in closed  form as, 

where Nd is  the physical length of the  stack,  and OJp) = cos N p  is an  additional 

Chebyshev function that I have defined, which is related to that of the second 

kind [21]. I have defined the normalized  real and  imaginary  parts of the  unit cell 

transmission  amplitude t as p = q t )  / T  = cos p and p = %t)/T. We  now have  the 

first piece of the 1D projection of Eq. (4) for the normalized 1D dipole emission 

power, the DOM. We  now need the modal  field in the nth unit cell, normalized to 

the electromagnetic energy  in the  entire  stack, e ,  ( q x )  = E,(m,x) / UN . 

Looking at Fig. 2, we can  see that  the boundary conditions on the  outer  edges of 

the PBG stack  is given in terms of tN and rW These are  in  turn simple  functions of 

the  unit cell scattering coefficients t and r, as per Eqs. (14). Hence, what  is needed 

is a way to propagate  these  outermost  boundary conditions (BC) inwards, to give 
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the correct BC on the n'h unit cell  in the  stack,  containing  the dipole emitter.  The 

electric field in the  nth cell  will have the  general form, E,(w,x)= A,(@) f(w,xl + 

B,(w) g(w,x). Here, f and g are  the independent solutions of the Helmholtz Eq. ( 8 ,  

assumed to be known and  independent of n or N. The constants A,, and B, do not 

depend on the position x ,  and can be solved for as per Eqs. (9), once the  nth cell 

boundary conditions are specified. To accomplish this, I will  employ the Scatter- 

ing  Matrix  Reduction  Formula  (SMRF), Eq. (13). First, realize that  the  matrix- 

transfer equation for the N-period  stack  can be written as AN = M"&, where 

AN = [ r:] and = k] define the BC at  the outer edges. This  equation  can be 

rewritten  as A, = M n-1 M M N - " & ,  which takes us  in to the nth  unit cell. Hence the 

BC on the  right-hand-side (RHS) of the  nth cell is given by p, = kN-n&, and  that 

on the left side by A,, = M N - n t l & .  Hence, I have  matrix  equations for the  right  and 

left BC at  the  nth  unit cell, which I can simplify by applying the SMRF to get, 

respectively (written in transpose form to conserve space), 

all  in  terms of known unit cell quantities t, r, and P. This provides an  analytic 

expression for the BC at the edges of the nth unit cell. The field inside  this cell has  

the form E,(w,x)= A,(o) f(w,x) + B,(w) g(o,x), where f and g are known properties 

of the  unit cell wavefunction solution, but A, and B, are to be determined. To find 

these I follow the  same procedure leading to Eq. (9) for the  unit cell, but now with 

the BC of Eq. (16) to get, 
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first time (to my knowledge) an exact solution to the lD wave equation  in  a 

general, finite, periodic structure. Without the explicit form of the  independent 

solutions to the  unit cell  wave equation, f and g, electric field E, can not be further 

simplified. 

Note that  the nth cell electric field, as defined implicitly in Eqs. (17), is not 

normalized properly for the spontaneous emission problem. It is currently 

normalized such that  the value of the right-moving field at  the left edge of the PBG 

stack  has amplitude one and zero phase.  This  is  a standard  normalization for the 

scattering problem but not for the spontaneous emission formula. Hence, given E, 

above, I define the  total energy of the N-period stack  as, 

which allows US then to find  the correct normalized eigenmodes functions  in the 

nth cell as, 

This  is now in  the correct form for use in the  spontaneous  emission  formula, 

Eq. (4), which when taken  with  the density of mode formula, Eq. (15), yields the 

general solution for the dipole emission problem in  this 1D model. In  the  next 

section I will illustrate how this  all works with the specific example of a quarter- 

wave stack. 



3. EMISSION IN A QUARTER-WAVE STACK 

In  this section I will take the general  theory developed  in the  previous 

section and apply it to the simple specific example dipole emission in a  finite, lD,  

quarter-wave  stack. The quarter-wave  unit cell and N-period stack  are depicted in 

Figs.  (3a)  and (3b), respectively. For simplicity, I choose as  the  unit cell a two- 

layer region of constant,  dispersionless  indices  n,  and n, of lengths a and b, 

respectively. There  is  a  real n,-to-n, interface at  x = a, and  a  real n,-to-n, interface 

at x = d = a+b, connecting the-n, layer to the  semi-infinite n, region on the  right. 

At x = 0 there  is a virtual  interface connecting the n, region of the  unit cell to the 

n,  semi-infinite region on the left. When this  unit cell is repeated N times, it 

generates  the  quarter-wave  stack  in Fig. (3b), also surrounded by an infinite  n, 

region. The quarter-wave condition requires  that  the n, and n, layers  have a n  

optical thickness  that is a quarter of some reference wavelength it, which 

requires  that n,a = n,b = & / 4  = m/(2 oJ, where o, = 2m/ito = ck, is  the  correspond- 

ing frequency which will turn out to be at  the  center of the photonic band gap 

(mid-gap). The detailed  properties of this  unit cell have been  worked out using 

matrix  transfer methods in previous works [9, 131, so I will just lift the needed 

formulas for this  particular  spontaneous emission problem. 

First, let me define some relevant n,-to-nj interface  Fresnel  transmission 

and reflection coefficients as, 

2ni t.. = - 
ni +- nj ’ 

n: -n ,  
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where, using  these, I can define two, special, double-boundary transmittance  and 

reflectance coefficients as Tij = tij tji , and Rij = -rij rji , which have the  energy 

conserving  property that TG -+ RG = 1. Now,  for the solution of the  spontaneous 

emission problem in  the N-period stack,  I need the complex transmission  and 

refection coefficients, t and r, for the  quarter-wave  unit cell in Fig. (3a).  These 

are [9, 131, 

where 6 = w / w, is a  dimensionless frequency normalized to that  at  midgap. 

Inserting  these expressions, Eqs. (211, into Eq. (15) for the N-period DOM, gives for 

the  quarter-wave (QW) stack [9,131, 

f l12  2 N Tl2cos2 (7x5 / 2) + R,, sin2(n6 / 2)E2,(P) 
w,Nd (1 - 2R12 + COS~CW)[T~~@~ ( p )  + sin2n6 S i ( p ) ]  ’ 

pZW(w) = - 

where p = arccos[(cos ZG - R,,)  T,,]. 

I plot this  quarter-wave  stack DOM, Eq.  (22), in Fig. 4 for the  parameters 

N=5, nI= l ,  n2=2, and q,=l. I have chosen for convenience to normalize the DOM to 

1 /hulk = vblrlk =dl / n,+l/ nJ/2, which is  the  harmonic  mean of the  group velocities 

in  the two regions of the  quarter-wave, bi-layer unit cell [9]. The frequency w w ,  

corresponds to the middle of the photonic band  gap. I draw only first half of the 

gap, since for a  quarter-wave  stack  the DOM is  symmetric about midgap [9,131. 

The wiggles in the  density of modes in the  pass band correspond to transmission 

resonance  frequencies  where  the transmission of the  stack TN = 1. These 

resonance  points of the N-period PBG stack correspond to the  Fabry-Perot 
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resonances of a  virtual dielectric slab of length D = Nd whose  effective index of 

refraction obeys the  dispersion  relation (pN = kdW)D = n,(w)k,,D, where (pN is  the 

phase of the N-period transmission coefficient t ,  the factor nJu) is  the effective 

index of the  virtual slab,  and k ,  = q,/c is  the vacuum wave number  with c the 

vacuum speed of light  as  usual. 

Now the electric field inside  the nth unit cell, Fig. (3b), must be written as  

function that  depends on whether  the field point x is in the n, or the n2 region. 

Hence, one can write, 

for the nth unit cell field. Now I may apply the  result of Eq. (17), or directly  use the 

BC in Eq. (16)"together  with the demand that  the field  be continuous and 

differentiable at  the n, to n2 interface, to obtain, 

where I have defined I,, = A:) +A:) and i?, = p y )  + p r )  in  terms of sums of the 

components of the nth unit cell boundary-value vectors, Eqs. (16). The  differential 

refractive index factor by 6n = (n,-nJ /(n,+nJ = -rip Using the complex quarter- 

wave transmission  and reflection coefficients, Eqs. ( Z O ) ,  I obtain, 
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for the boundary condition quantities.  Inserting Eqs. (25) into Eqs.  (24) into 

Eqs. (23) gives us  the analytic solution for E,(w,x) in the nth unit cell. 

As an example,  in Fig. 5 I plot the intensity I = I E3(wyx) I in  the  middle- 

most unit cell (n = 3), for an N = 5 period stack. I again  use  the index  values of 

n, = 1 and n, = 2 for illustration.  In Fig. 5a the  intensity  in  the n, layer is plotted 

over the  range x E [(n-l)d,  (n-l)d+a]. In Fig.  5b I  have the  intensity  in  the n, 

layer over the  range x E [nd-by  nd]. (In both cases  I have translated  the  unit cell 

to a new origin and scaled by the dielectric thickness.) The plots are  represented 

as a 2D function of both  dipole frequency w and position x .  The electric modal 

nodal and  antinodal behavior at different frequencies is clearly visible. I n  

particular, notice that  at  the low-frequency band edge, at  around w/0,=0.75~ the 

low-index field la experiences an antinode, while the  intensity Ib in  the  high-index 

region exhibits  a node. This is a well-known property of the field modes at  the low- 

frequency photonic band edge [9,11,22].  This behavior is reversed at  the  high- 

frequency edge, which is not displayed here. The other pronounced modal 

distributions  are at  the transmission resonance frequencies, which correspond to 

Fabry-Perot oscillations in  a  virtual dielectric slab of effective index nN(w) as  

discussed above. 

These modal field intensities, when normalized to the modal energy as  per 

Eqs. (18) and (19), provide the  final  missing piece for the solution to the  spontane- 

ous emission formula, Eq. (4). This  equation can be written  in 1D notation  as, 



which yields the scaled emitted power  for a  normal dipole (perpendicular to the x 

direction), of frequency o and position x inside the nth unit cell (I have dropped the 

subscripts  naught on w and x) .  The full expression  is too large to be presented 

here; it is more useful now to plot the  results for the specific example I have been 

using  with  the  central  unit cell (n = 3), of an N = 5 period stack. I again  use  the 

index  values of n, = 1 and n, = 2. 

First,  using  the modal fields above, I must  calculate  the  normalization 

function U,(W,, given by Eq.  (18). The result for the  example five-period stack is 

plotted in Fig. (6). Note that  there  are four resonances  in the  pass band, corre- 

sponding to the four transmission resonances  seen  in the DOM, Fig. (4). Again, 

these  resonances  can be thought of as Fabry-Perot resonances of a virtual 

dielectric slab  with an effective index of refraction  equal to that of the PBG stack, 

as discussed above. It is well known that  the DOM is very large  at such  reso- 

nances  where the  structure behaves like a high-Q cavity, and hence this  is  where 

the energy  stored  in the  structure  is large when compared to other frequencies, a s  

is clear  in the plot.  Once this energy  normalization function is  established, I can 

then  generated  the  final  result of the 1D emission rate p3(o, x), given in Eq. (26), 

for a point dipole emitter of frequency w and position x inside the  third  (middle) 

unit cell of the five-period quarter-wave  stack  that I have been using  throughout. 

The results for the n, = I and n2 = 2 regions are plotted separately  in Figs. 7a and 

7b, respectively. I have chosen the dipole to be located in  the geometric  center of 

each  layer, which in my translated  and scaled units corresponds to x =a12 and 

x = b/2 ,  respectively. Such  a choice corresponds  qualitatively to the  average 

response of a collection of dipoles distributed uniformly throughout  the  layer [ l l ] .  

We can  see  the effect of the  band-gap (o > 0.75wJ is to suppress  the emission for 



both  types of layer as expected. At the low-frequency band-edge resonance near 

w = 0.750, we see in Fig. 7a that the low-index emission is relatively suppressed 

even though the  density of modes, Fig. (4), is very large  here.  This result is due to 

the fact that  the low-index modal  field exhibits  a node at the dipole location, 

Fig. 5a,  and so the radiation-reaction  and  vacuum fields couple very weakly to the 

dipole in  spite of the  large DOM. The opposite is true  in  the  high-index  layer 

where  the dipole sits at a modal node,  Fig.  5b, and so the fields couple very 

strongly to the dipole, enhancing  the emission, as seen in Fig. 7b. This  band-edge 

emission enhancement  was seen both numerically  experimentally by  my former 

co-workers and me in  a 1D active semiconductor stack [l l] .  My exact model 

presented  here  agrees  qualitatively  quite well with those results. 

4. SUMMARY AND CONCLUSIONS 

In  this work I have  presented, for the first time,  a complete solution of the 

point dipole emission problem in  a simple model of a finite, lD ,  photonic band-gap 

material. The study of spontaneous emission in cavities has a long tradition of 

theory [23] and experiment [24] in the field of cavity QED. A photonic band-gap 

structure is particular  type of dielectric cavity where  interference effects give rise 

to the cavity confinement  and  the  alteration of the  electromagnetic modal 

structure. The fact that a  finite, 1D  PBG material  is quasi-periodic allows one to 

make  quantitative  statements about the density of modes and  the modal eigen- 

functions,  using some simple  analytical results from matrix  transfer theory. I n  

particular,  in Sec. 2 I give a formula for the scaled dipole emission rate, Eq. (41, in 

terms of the density of modes and  the  electromagnetic eigenmode function. For a 

general 1D  PBG stack composed of arbitrary, lossless, dispersionless  unit cells, I 

give the  Scattering  Matrix Reduction Formula, Eq. (13), which allows one to 
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express the  transfer  matrix for the  entire  stack (or any subset  thereof)  in terms of 

the  matrix for the  unit cell and  the Bloch phase. With this  in  hand,  an exact 

solution of the  density of modes can be found, Eq.  (15), as well as  the modal fields, 

Eqs. (17), giving the 1D emission rate. To illustrate  these ideas,  in Sec. 3 I give a 

specific example of the emission in  the case of a quarter wave stack, for which the 

density of modes is given by Eq.  (22) and  the electric field  modes by Eqs.  (23) and 

(24). Using  these results, I am able to calculate and plot the  density of modes, 

electric field intensity, total electromagnetic  energy,  and finally the point dipole 

emission rate, all  in  a five-period, quarter-wave  stack. The result of this work has 

many  applications to the  study of wave phenomena  in 1D periodic structures. 

Although this paper  was designed with  electromagnetic waves in  mind,  the 

result  is very general  and  can apply to electron matter waves in  semiconductor 

superlattices [25], sound wave or phonon emission in periodic structures 1261, and 

atomic matter-waves  in 1D optical molasses periodic potentials [27]. 
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FIGURE CAP'I'IONS 

Fig. 1 Scattering  an electromagnetic wave off of a  finite, lD, inhomogeneous 

dielectric. An electromagnetic wave is incident from the leR and  nor- 

malized to have  amplitude  unity  and zero phase a t  the leftedge of the po- 

tential. The index n(x) varies  with position x over the  range (0, d)  but is 

dispersionless.  The complex transmission  and reflection coefficients t 

and r can be calculated once the form of n(x) is specified. A point dipole 

of moment p ,  oriented  perpendicular to the x axis, is located at a  point 

inside the dielectric. 

Fig. 2 The index profile in Fig. 1 is now repeated periodically N times to form a 

finite, lD, N-period, photonic band structure. The  stack  transmission 

and reflection coeficients t N  and rN can be found in  terms of the  unit cell 

quantities t, r, and  the Bloch phase p. 

Fig. 3 In  (a) I depict a unit cell scatterer for making  a  quarter-wave  stack.  The 

unit cell has two layers of indices n, and n2. The  thickness of each layer 

is chosen to be a quarter of some reference wavelength do. The cell is  

sandwiched between  two semi-infinite regions of index n, . In (b) this 

quarter-wave cell is  repeated N times to form an N-period quarter-wave 

stack. The emission rate of a point dipole emitter in the nth unit cell is 

derived. 

Fig. 4 The density of modes (DOM), Eq. (22), is plotted here  as a function of the 

dimensionless frequency o/q for a five-period quarter wave stack  with 

layer indices n, = 1 and n, = 2. I have normalized  the DOM to a bulk ve- 

locity vbulk,  which corresponds to scaling  the DOM by that of an  infinite 
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homogenous material with an effective index that is the harmonic mean 

of n, = 1 and n2 = 2. The photonic band gap is in a region o/ oo E [O. 75, 11. 

(The DOM of a  quarter-wave  stack  is  symmetric  about the point doo = 1.) 

The supression of the DOM in  the  gap  is clear, as  is  the  enhancement of 

the DOM at  the band-edge resonance at w/oo = 0.75, where the  transmis- 

sion of the  stack  is  unity.  There  are  other  less-pronounced  peaks  in  the 

DOM in  the  pass band at frequencies that correspond to other  transmis- 

sion resonances. 

Fig. 5 Depicted here  are  the unnormalized  electric field intensities  calculated 

from Eqs. (23) (in  arbitrary  dimensionless  units)  in  the  third  (middle) 

unit cell of a five-period quarter-wave  stack.  In  (a) I show the  intensity 

in  the n, layer  and  in (b) the n2 layer.  These  intensities  are given as a 

function of both scaled frequency o/q and  the scaled position x / a  or x/b 

inside the n, = 1 and n2 = 2 layers  in  (a)  and  (b), respectively. The position 

of the origin at  x = 0 is with respect to a coordinate system  translated  up 

to the  unit cell layer. The suppression of the field in  the band  gap region, 

o / w o  E 10.75, 11, is clear in both (a)  and  (b). The field in  the n, (low-index) 

region at  the photonic band edge, w/wo = 0.75, exhibits  a  spacial  node, 

while that  in  the nz (high-index) region shows an  antinode.  This  feature 

is a well-known property of the modal fields at  the low-frequency edge of 

the photonic band  gap. (Field intensities  are not symmetric  in  each layer 

due to finite-size effects.) The electric field oscillations at  the  pass-band 

frequencies correspond to other  transmission resonance  Fabry-Perot os- 

cillations of a virtual dielectric slab  having  an effective index given by 

the dispersion  relation of the  stack. 
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